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Abstract

Both symmetrical and asymmetrical final displacements are observed for elastic—plastic beams under symmetrical
impulsive loading. A three-degree-of-freedom Shanley-type model is developed in this study, which is capable of re-
vealing chaotic and asymmetrical responses of an elastic—plastic beam by introducing initial imperfections. To identify
the asymmetrical displacement, the beam response is decomposed into three vibration modes. Corresponding modal
participation factors are derived based on the displacement of the three-degree-of-freedom beam model. Phase plane
trajectories, Poincaré maps and power spectral density diagrams are derived to illustrate both the symmetrical and
asymmetrical chaotic vibrations. Numerical simulations using a general-purpose FE code LS-DYNA are carried out for
an elastic—plastic beam subjected to impulsive load. The simulation results indicate that the elastic—plastic beam
demonstrates chaotic and asymmetrical vibration when the applied impulsive load exceeds a critical value, which agrees
with experimental observations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The counter-intuitive phenomenon refers to the observation that the final midspan point of elastic—
plastic beams rests in the same side of the applied load. Symonds and Yu (1985) firstly observed this
phenomenon when modeling the dynamic response of an elastic—plastic beam subjected to impulsive load.
This phenomenon has been proven by independent impact experiments on thin elastic—plastic beams by Li
et al. (1991) and Kolsky et al. (1991), respectively. Similar phenomenon was also detected for elastic—plastic
plates and shells in underwater and air explosions (Galiev, 1996, 1997). A single-degree-of-freedom (1-DoF)
Shanley-type beam model was developed to capture the basic features of the counter-intuitive response and
identify the intrinsic mechanism (Symonds and Yu, 1985; Genna and Symonds, 1987; Symonds et al.,
1986). The Shanley model was later extended to two-degree-of-freedom (2-DoF) for further illustration
of the chaotic unpredictability, strain energy distribution, and damping effect (Lee and Symonds, 1992; Lee
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et al., 1992). Except the Shanley-type beam model, Qian and Symonds (1996) developed a Galerkin beam
model to explore the anomalous beam dynamics, and the results were compared with the FE solutions.
Similar Galerkin models of finite degrees of freedom were developed to study the anomalous response of
elastic—plastic circular plates (Bassi et al., 2002). It has been concluded that the counter-intuitive response is
a type of extremely parameter-sensitive phenomenon, which is accompanied with chaotic vibration and
anomalous final displacement of the beams (Li et al., 1991; Lee and Symonds, 1992; Li and Liu, 2003).
Evidence of chaos for elastic, plastic beams under short pulse load has been observed in displacement-time
histories, phase plane trajectories, Poincaré maps, power spectral density diagrams and Lyapunov expo-
nents (Lee and Symonds, 1992).

However, with the available 1-DoF and 2-DoF Shanley-type models (Symonds and Yu, 1985; Lee et al.,
1992), only symmetrical displacements of the beam can be approached. Asymmetrical displacement has
been ignored in all the previous analytical and numerical studies although Li et al. (1991) reported not only
the counter-intuitive behavior but also asymmetrical final displacements of thin clamped beams. The
existing symmetrical models are unable to capture the asymmetrical displacements.

In the present study, a three-degree-of-freedom (3-DoF) Shanley-type model is developed for elastic—
plastic beam, which captures symmetrical and asymmetrical chaotic responses. The 2-DoF Shanley-type
model (Lee et al., 1992), considered as a special case of the 3-DoF model, is used for the benchmark test of
the present model where asymmetrical vibration may be activated by applying very small initial imper-
fection of the beam. The derived beam response is decomposed into three vibration modes. The corre-
sponding modal participation factors enable to illustrate clearly the chaotic behavior of both symmetrical
and asymmetrical responses. An elastic—plastic uniform beam is also analyzed by using a general-purpose
FE code LS-DYNA, which confirms that elastic—plastic beam does demonstrate chaotic and asymmetrical
vibration when the applied impulsive load exceeds a critical value. In consideration that the counter-
intuitive phenomenon is the first order chaotic response, the anomalous asymmetrical final displacement
can be interpreted as the second order chaotic response of elastic—plastic thin beam subject to impulsive
load.

2. Three-degree-of-freedom analytical model

The 3-DoF Shanley-type beam model is illustrated schematically in Fig. 1. 4B, BC, CD and DE are rigid
bars of mass m/2 (2m represents the total mass of the beam) connected to deformable zero-length ‘cells’ at
B, C and D, which are assumed to act as sandwich beam sections (Symonds and Yu, 1985; Lee et al., 1992).
The vertical displacements at the left-quarter point B, the midpoint C and the right-quarter point D are
denoted as wy, w, and ws, respectively. The corresponding horizontal displacements at these three points are
uy, uy and uz. The force acting at the midpoint is a rectangular pulse. Superior to those symmetrical half-
beam models, the present 3-DoF model is capable of catching the asymmetrical transverse deformations.

As shown in Fig. 1, the stresses in the ‘cells’ at B and D are indicated by o3, 03, 0p; and op,, where the
subscripts 1 and 2 refer to the upper and lower flanges, respectively. The ‘cell’ at C is divided into two parts
along the vertical axis through the midpoint. The stresses in the left half are denoted by o¢; and o¢,, those
in the right half 6.3 and o¢4, where the subscripts 1, 3 and 2, 4 refer to the upper and lower flanges, re-
spectively. The material is assumed to be elastic, perfectly plastic. The yielding conditions and flow rules are
as follows:

—00 < 04 < 09 (1)
(0,4 L 09)del; =0 (2)

wherei=1,2whenoa =BorDandi=1,2,3,4 when o = C (no summation over o and i). gy is the yielding
stress in each flange. The strain increments at ecach flange consist of elastic and plastic components, so that
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Fig. 1. Three-degree-of-freedom beam model: (a) deflected beam model; (b) deformable sandwich cells.

dsm' = % dO'w —+ dsil

where E is the Young’s modulus.

The stresses can be obtained by integrating Eq. (3):

Oui = E(sai - 81;1)

According to the geometrical and stress—strain relationship, the stresses can be expressed as
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(11)
It has been assumed during the manipulation of Egs. (5)—(11) that the axial force is constant over the length

of the beam by neglecting axial inertia effects.
The equations of motion for the system can be written in the following matrix form:

T4 0] (i 2 —1 07 (w 2 -1 0 0 Z‘
— |0 1 4| »+NcosO-| 0 -1 2 we+10 0 -1 2 2
1 4 1

1'4'/3 -1 2 -1 w3
0
~Jo (12)
Pl
2

where P is the external impulsive load characterized by a rectangular pulse load of intensity P and duration
ty in the present study; 0 is the rotation angle of cell C with an initial value of 0. It can be determined by
combining the equilibrium equations of the right and left parts of the beam through considering the
constant axial force in the beam. The rotation angle 6 is normally very small because the transverse de-
flection is much smaller than the dimension of the beam span. In the present study, sin § has been elimi-
nated in the equilibrium equation (12) when combining the equilibrium equations of the right and left
parts, however, cos 8 in Eq. (12) is approximated to 1 in order to keep a linear form of the differential
equations. The axial force and bending moment variables in Eq. (12) are obtained via the following
equations:

AE (w2 w2 (wma—w) (wa—ws) 1
NZ? A 2 + 2 _1(8];1+'9§2+8€‘1+?pcz+8]éz+8€4+£gl+8];)z) (13)
. | |
2\ _ b _ - Ccl T 2
M AER rpo 1 - ::2 4 &3 — ey (4
M, 0 -1 2 ? &p1 — €

It should be noted that the bending moments on cell C are not in balance, i.e., M, # M;.
Substituting Eqgs. (13) and (14) into Eq. (12), furnishes,

MJ{Ww} + [Ki[{w} + [K[{w} + [Gi][{&’} + {Gs} = {f} (15)

where the matrices are

410 . 30 2 1 0
m
_ — _ [ v —
M=z |0 1 4] Kl=F 0 =3 5| K= (X#)[ 0 1 -2|.
141 3 4 -3 2
[z 2t 00 0o
Gl=4]0 0 0 0 -1 -2



Y. M. Liu et al. | International Journal of Solids and Structures 41 (2004) 765-784 769

and the vectors are

wi 0
wh=<gwm o, {f}= 0 5, {=[eh e e & &3 & &n '9]1))2}/
W3 ﬁ

(2w — wy) [W% + w% + (wy — w1)2 + (wy — W3)2]

G:] = (= wa -+ 2003) w2 493+ (2 = 1) 4 (2 = wa)?]

28
(—wi 4+ 2wy — ws) [W% + w24 (wy —wi)* 4 (wy — W3)2]

in which )~ & = &), + &), + 60, + & + 605 + &y + &)y + €hy; A/2 is the area of each flange; 4 is the distance
between the flanges of each cell; and an overhead dot denotes the time derivatives. Eq. (15) contains both
material and geometrical nonlinear terms. Material and geometrical parameters of the model are selected as
6o =0.3 GPa, E=40 GPa, m =0.0216 kg, I =0.1 m, 4 =8 x 10> m?, and 4 = 2.71 x 10~* m. The du-
ration for the short pulse is 7y = 0.5 ms throughout the analysis, whereas the magnitude of the pulse is
variable. The parameters employed in the present study are exactly the same as those used by Lee et al.
(1992).

3. Symmetrical response

Eq. (15) is then integrated numerically using central finite difference method. The time step is adopted as
dt = 0.5 x 1077 s. Justification of the time step for convergence of finite difference method has been dis-
cussed in Lee et al. (1992). Trial-and-error method is further used in the present study to justify the con-
vergence for the adopted time step. In each time step the yielding condition is examined and appropriate
stress—strain relationship is used.

The present 3-DoF model can be simplified into the 2-DoF model (Lee et al., 1992), if it is considered as
an ideal symmetrical structure. The displacement-time histories for ideal symmetrical model at the mid-
point C for P = 1000, 2800 and 4000 N are shown in Fig. 2. In Fig. 2(a) for P = 1000 N, the response is
entirely elastic in spite of geometrical nonlinearity. It is a kind of quasi-periodic vibration with displacement
varies in range of negative limit to equivalent positive limit. In Fig. 2(b) for P = 2800 N, after the initial
rebounding period, it vibrates solely on the negative side, which is known as the counter-intuitive pheno-
menon. With P = 4000 N in Fig. 2(c), the midpoint displacement vibrates in alignment with the applied
load after the impulsive load is removed, which returns back to the intuitively expected mode.

Detailed discussions on the chaotic response of the symmetrical beam model can be found in Lee and
Symonds (1992) and Lee et al. (1992). The vibration pattern and magnitude obtained with the present 3-
DoF Shanley-type beam model agree well with those reported previously (Lee et al., 1992), which validates
the assumptions and equations in the present model.

4. Asymmetrical response

The symmetrical response is the only response mode for an ideal symmetrical model, e.g., 1-DoF and 2-
DoF Shanley-type models. However, for any engineering structural problems, small perturbation due to
geometrical and material imperfections, improperly applied loading and boundary conditions is inevitable,
which may activate asymmetrical response mode of the system, as shown by experimental results in Li et al.
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Fig. 2. Displacement-time histories at the midpoint: (a) 1000 N (elastic); (b) 2800 N; (c) 4000 N.

(1991). It will be shown that the present 3-DoF model is capable of demonstrating the asymmetrical re-
sponses of elastic—plastic beam.

The asymmetrical responses of an elastic—plastic beam to short pulse load have never been addressed in
the existing analytical and numerical approaches. For ideal deterministic structures, the response can be
uniquely determined by the system parameters and external loads. However, for engineering structures,
geometric or material imperfections may cause uncertainties of the system parameters, and subsequently
affect the structural response. On the other hand, the external environment may influence the system re-
sponse through perturbation such as initial conditions or external loads. In this section, the effect of a very
small initial misalignment on the response is studied. This perturbation is applied by assigning a small
initial value to ws, i.e. wyp = 0.001 mm, which is about 0.037% of the thickness or 0.0005% of the length of
the beam. The initial values for w; and w, remain zero.

Fig. 3(a)-(e) compare the displacement—time histories at the left-quarter point B (w;) and the right-
quarter point D (w;) with different magnitudes of the short pulse. The magnitudes of the impulsive load are
respectively (a) 1000 N, (b) 2500 N, (c) 2800 N, (d) 4200 N and (e) 4400 N. In case (a) of P = 1000 N, the
displacement-time histories of w; and ws are almost same, which indicates that the response of the system is
approximately symmetrical and insensitive to the small perturbation. The response is purely elastic in this
case, implies that such small perturbation could be neglected for the elastic vibration. For cases (b)—(e),
plastic strains in the sandwiched cells are relatively high, the displacement-time histories of w; and ws
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Fig. 4. Characteristic diagram of midpoint displacement w,.

deviate from each other to different degrees, which means that the 3-DoF system response becomes
asymmetrical and sensitive to the initial perturbation. The small perturbation also induces phase shift. For
the symmetrical response, w; and w3 always have the same phase. For cases (b) and (d), the phase deviation
of w; and w; is minor. However, for cases (c) and (e), w; and ws vibrate in opposite phases after the initial
period.

The characteristic diagram of the midpoint displacement w, with respect to the impulsive load P is
depicted in Fig. 4, which is categorized into three zones. The figure is obtained through the calculations at
an impulsive load interval of 10 N. The upper curve in Fig. 4 represents the maximum values of the
midpoint displacement w, between 0.01 and 0.05 s, and the lower curve is the minimum values within this
period. The response in the initial period till 0.01 s is not included in the evaluation of the maximum and
minimum midpoint displacements. Final deformation at the midpoint will thus rest between the two curves
if proper viscous damping is introduced. In zone 4, the responses are elastic with quasi-periodic vibration.
The counter-intuitive response falls into zone B. Similar to the results obtained by Lee et al. (1992), in some
of the regions of zone B, the vibration response is unpredictable because of the disorder of the maximum
and minimum displacements at the midpoint. In zone C, the midpoint of the beam vibrates in the positive
direction and does not rebound to the negative direction after the impulsive load is removed. The char-
acteristic diagram of the midpoint response shown in Fig. 4 agrees well with the results derived by Lee et al.
(1992). It implies that the 2-DoF model (Lee et al., 1992) is a special case of the present 3-DoF model.
However, the present 3-DoF model is able to simulate the asymmetrical response of the elastic—plastic
system.

5. Characterization of chaotic responses

Chaos is a term referring to the motions in deterministic physical and mathematical systems whose time
history depends on initial conditions in an extremely sensitive way. Deterministic prediction of these sys-
tems is impossible. On the other hand, it has been perceived that a seemingly underlying order exists which
suggests some predictable properties of chaotic behavior. Phase plane, Poincaré map, power spectral
density, Lyapunov exponent and fractal dimensions are commonly used tools to explore chaotic response
(Moon, 1992). In the present study, the first three methods are applied to characterize the chaotic and
asymmetrical response of the 3-DoF Shanley-type beam model.
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Fig. 5. Phase plane trajectories (midpoint velocity versus displacement): (a) 1000 N; (b) 2500 N; (c) 4400 N.

5.1. Phase plane

Phase plane is defined as a set of points (x,v), where x and v are respectively displacement and velocity
variables. Fig. 5 shows the phase plane trajectories with respect to three impulsive loads for the current 3-
DoF beam model. When the motion is periodic, the phase plane orbits on closed curves. In Fig. 5(a) with
the pulse magnitude 1000 N, the motion is a kind of quasi-periodic. However, in Fig. 5(b) and (c), the traces
of motion seem never to overlap, and the trajectories tend to fill up a specific section of the phase space. The
casual trace is an implication of chaos, which can be demonstrated more clearly in the modified phase plane
called Poincaré map.

5.2. Poincaré map

The motion of a particle is a continuous trajectory in the phase plane. However, if the state of the
particle is recorded only at discrete times, the motion will appear as a sequence of points in the phase plane.
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When the sampling times are chosen following specific rules, the discrete sampling points construct a
Poincaré map. For forced vibration system, if the driving motion has a period of 7, the sampling rule for a
Poincaré map defines the sampling interval ¢, = nT + 79, where 1 is a starting time of the sampling points.
The present 3-DoF Shanley-type beam model is an autonomous system, where the force does not depend
explicitly on time. The stroboscopic times are defined as # such that w,(#;) = 0, and the Poincaré map is
plotted as w;(#;) against w;(#). Same method was employed by Lee and Symonds (1992) and Lee et al.
(1992).

Fig. 6 shows the Poincaré maps with respect to the three magnitudes of the impulsive force P, i.e. (a)
1000 N, (b) 2500 N and (c) 4400 N. The quasi-periodic motion with P = 1000 N is represented by two short
segments illustrated in Fig. 6(a). For the chaotic cases (b) and (c), the Poincaré maps do not demonstrate
either a finite set of points or a closed orbit. The unorganized points do not form a pattern but appear as a
cloud in the map. For case (b), the unorganized points distribute in a narrow band bounded by two lines
ws = wy + ¢ and w3 = wy + &. For case (c), the two bounding lines can be expressed as w3 = —w; + ¢ and
w3 = —w; + &. &1, 6,6 and & can be calculated approximately by curve fitting of the boundary points.
From the Poincaré maps, it is seen that w; and w; are phase sensitive. They are in the same phase for case
(b), but in the opposite phase for case (c), respectively as shown in Fig. 6(b) and (c).
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Fig. 6. Poincaré maps: (a) 1000 N; (b) 2500 N; (c) 4400 N.
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Fig. 7. Power spectral density (PSD) diagrams for impulsive load P: (a) 1000 N; (b) 2500 N; (c) 4400 N.

5.3. Power spectral density

Power spectral density is another important indicator of chaotic response. The change from regular to
chaotic vibrations is represented by a change from a power density spectrum consisting of a few isolated
peaks at certain frequencies to a much more complicated spectrum, including both broad spectrum and
irregular peaks and valleys.

Fig. 7 gives the power spectral density diagrams obtained from fast Fourier transform of the midpoint
displacement-time histories. Fig. 7(a) depicts a typical spectrum of regular (quasi-periodic) vibrations.
There exists an obvious peak at around 580 Hz in Fig. 7(a), while the energy in Fig. 7(b) and (c) is dis-
tributed over a wide range of frequencies, indicating a fully developed chaotic vibration.

6. Effect of vibration modes

Mode superposition is commonly used to calculate the response of systems of finite extent subjected to
instant loads (Constantine, 1994). The uncoupled equations of motion are defined by modal participation
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Fig. 8. Vibration modes of the 3-DoF Shanley-type beam model.

factors of each mode. The modal participation factors change with different loads, which consequently
determine the variation of the system response.

The concept ‘vibration mode’ and ‘modal participation factor’ are extended to the current system for
characterizing the chaotic symmetrical and asymmetrical response. Instead of solving the response from the
mode shapes and the modal participation factors, the present study determines the modal participation
factors through inverse derivation of the displacement response obtained from the central finite difference
method. Three orthogonal and normalized mode shapes are defined for the 3-DoF system as shown in Fig.
8. The three modal participation factors oy, ¢, and o3 are governed by the three displacement variables. As
seen in Fig. 8, the second mode represents an anti-symmetrical vibration mode. The corresponding modal
participation factor o, characterizes the asymmetrical response of the beam model.

From Fig. 8, the displacement variables w;, w, and w; are superposed as

1 1 1
wy Ve V2 V3 oy
wrp =143 0 —lq® (16)
w3 1 _ 1 € o3

V6 V2 V3

L

1 1
OCI \/6 75 7§ A%1
o o= % 0 — % L%) (17)
o3 1 1 1 w3
NG V2 V3

Fig. 9 shows the time histories of the modal participation factors in the first 0.05 s of response time. In all
the five cases, o has the largest magnitude comparing with o, and o3, which implies that the first mode
always dominates the vibration. In case (a) with P is equal to 1000 N, the amplitude of a, approximates zero
in the concerned response time period. Therefore, the response of the system is mainly symmetrical. In the
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other cases, the anti-symmetrical mode is activated and the modal participation factor o, holds zero only in
a very short initial period, after which it starts to contribute to the system response, and consequently
results in the asymmetrical vibration. The effect of «, is anomalous because it may vanish in certain pulse
magnitude as illustrated in Fig. 9(d).

The phase plane trajectories of o, are plotted in Fig. 10 for the three different impulsive loads, i.e. (a)
1000 N, (b) 2500 N, (c) 4400 N. It is observed that the quasi-periodic vibration with P = 1000 N forms a
close phase plane trajectory of the modal participation factor a,. The two chaotic cases, however, derives
non-overlapped traces on the o, phase plane. Fig. 11 illustrates the Poincaré maps of the modal partici-
pation factors for the same three cases as illustrated in Fig. 10. The stroboscopic times are defined as in-
stants ¢ such that a,(¢;) = 0, and the Poincaré maps are plotted as o3(¢;) against o (#;). It is seen again that
the quasi-periodic motion with P = 1000 N produces a regular pattern of the Poincaré map (see Fig. 11(a)).
However, the Poincaré maps with P = 2500 and 4400 N as illustrated respectively in Fig. 11(b) and (c) by
the unorganized points show obvious chaotic characteristics. Fig. 12 depicts the power spectral density
diagrams obtained from the time histories of o, for the three cases. The chaotic spectrum of the asym-
metrical vibration can be clearly identified from the wide range distribution of energy in the frequency
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Fig. 11. Poincaré maps of modal participation factors: (a) 1000 N; (b) 2500 N; (c) 4400 N.

domain (see Fig. 12(b) and (c)). The quasi-periodic vibration, however, is dominated by a single peak vi-
bration frequency, which is much higher than the symmetrical elastic vibration frequency (about 580 Hz).
From Figs. 10-12, it can be recognized that, if the magnitude of the impulsive load is relatively low, the
modal participation factors vibrates quasi-periodically and the effect of the asymmetrical mode is very
minor. However, with increase of the magnitude of the load, the beam model exhibits obvious chaotic
characteristics for both symmetrical and asymmetrical vibration responses.

The characteristic diagram of the modal participation factors with impulsive load varying from 1000 to
5000 N is shown in Fig. 13, calculated again with a pulse magnitude interval of 10 N. The duration of the
rectangular pulse is kept 0.5 ms. The modal participation factors in the diagram are defined as the maxi-
mum absolute value within 0.02 s of vibration period. It is seen that the modal participation factor «,
increases steadily with the increase of the impulsive load P. The third modal participation factor oz rep-
resenting the second order symmetrical vibration mode also has an ascending trend although there are a few
minor descending regions. The ascending trend indicates that the modal participation factors «; and o3
become larger with the increase of the impulsive load. It is reasonable because the beam model responds
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more significant symmetrical displacement with the increase of the external impulsive load. The second
modal participation factor a, changes sharply after the impulsive load exceeds a critical value about 1500
N. Besides, the maximum absolute value of ¢, is very sensitive to the applied load, indicating that the
asymmetrical response of the system is anomalous. There exist several narrow regions of the impulsive load
within which o, are approximately zero.

7. Numerical simulation of asymmetrical response for elastic—plastic beam

To further address the asymmetrical response of elastic—plastic beams, the uniform beam model em-
ployed by Symonds and Lee (1992) with both ends fully constrained is analyzed using a general-purpose FE
code LS-DYNA (2001). A concentrated force with a rectangular pulse of intensity P and duration #, = 0.5
ms is applied at the midpoint of the beam. The material of the beam is elastic, perfectly plastic. The span,
the width and the thickness of the beam are 203.2, 20 and 2.32 mm respectively. The Young’s modulus, the
yielding stress, the mass density and the Poisson’s ratio of the beam material are taken as 70 GPa, 0.3 GPa,
2700 kg/m?® and 0.3, respectively.

To activate asymmetrical response of the beam, very small misalignment is assigned to the beam as
shown in Fig. 14. Points 4 and E are the two fixed-ends of the beam. Point B, C and D are the left-quarter
point, the midpoint and the right-quarter point of the beam, respectively. wy is the initial misalignment at
point B with a value of 0.01 mm, which results in an initial rotation angle « approximating 0.01°.

The uniform beam is meshed with 200x20x 5 brick elements. The elastic and kinematic plastic hard-
ening material model *"MAT_PLASTIC_KINEMATIC in LS-DYNA is adopted. The simulated dis-
placement-time histories at the points B, C and D with respect to different magnitudes of the short pulse
load are shown in Fig. 15. It is seen that the beam vibrates symmetrically when the magnitude of the short
pulse is relatively small (Fig. 15(a) and (b)) because of the almost identical displacement variations at points
B and D. Asymmetrical response occurs when the applied load is 1300 N. However, it vanishes when the
load is 1600 N. For cases (b) and (c), the beam behaves counter-intuitively. The simulation results confirm
again that the asymmetrical response is sensitive to the applied load. Fig. 16 plots the difference between the
displacement—time histories at the left-quarter point B (wp) and the right-quarter point D (wp). The ana-
lytical and numerical results in the present study conform to the experimental observations of Li et al.
(1991).

8. Conclusions

A three-degree-of-freedom beam model is developed, which is capable of capturing the asymmetrical
response of elastic—plastic beams. The main purpose of the present paper is to present basic features of the
asymmetrical counter-intuitive response mode, which has been observed in previous experiment (Li et al.,
1991), but were ignored in past investigations. There exist other issues, which are worthy for further studies,
e.g., using the energy method (Borino et al., 1989; Lee and Symonds, 1992; Lee et al., 1992) to study the
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Fig. 14. Initial misalignment of fix-ended beam.
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response boundary of the 3-DoF beam model. However, the complexity of the topography of the strain
energy surface will increase due to the increase of degree of freedom.

The two-degree-of-freedom Shanley-type model (Lee et al., 1992) is a special case of the present model.
Through decomposition of the vibration response, asymmetrical vibration of the elastic—plastic beam
model is identified. Both the symmetrical and the asymmetrical vibrations are chaotic. The asymmetrical
vibration becomes significant when the impulsive load exceeds a critical value. The asymmetrical vibration
may be interpreted as the second-order chaotic response of elastic—plastic beam, whereas the well-addressed
counter-intuitive behavior is the first order chaos. For the 3-DoF model, same parameters as those used by
Lee et al. (1992) were employed in order to validate our results. However, for the FE model, the parameters
adopted by Symonds and Lee (1992) were used in order to compare present results from LS-DYNA with
the previous results using ABAQUS. It is shown that present results are capable of duplicating the results in
the previous studies and revealing the asymmetric responses of the beam.

Experiment data of the asymmetrical final deformation is very limited and scattered. The present study
did not compare the analytical results with the experimental data quantitatively. To accurately capture the
asymmetrical and chaotic final deformation of an elastic—plastic beam, more experiment data with careful
setup of impact tests are required.

The present analytical Shanley-type model is able to capture the basic features of the chaotic and
asymmetrical response of elastic—plastic beam. It provides guidance for numerical simulations and experi-
mental studies of the chaotic beam response under short pulse load.
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